
Heppy

Nov 02, 2020

Contents:

1 Value with uncertainties 3

2 Histogram 5
2.1 Base histogram . 5
2.2 One-dimensional histogram . 8
2.3 Two-dimensional histogram . 14
2.4 Free functions . 19

3 Histogram stack 21

4 Plotting 23

5 Heatmap (3D plot) 25

6 Indices and tables 27

Index 29

i

ii

Heppy

The Heppy package provides useful data structures and tools for high energy physics.

Contents: 1

Heppy

2 Contents:

CHAPTER 1

Value with uncertainties

class heppy.Value(nominal, uncorr_variations={}, corr_variations={}, attributes={})
A single value with uncertainties.

Parameters

• nominal (float) – nominal value

• uncorr_variations (dict of str and float) – dictionary of variations that are
uncorrelated between different heppy.value objects even when they have the same key

• corr_variations (dict of str and float) – dictionary of variations that are fully
correlated between different heppy.value objects when they have the same key, and
uncorrelated otherwise

• attributes (dict) – dictionary of completely arbitrary attributes that the user can pro-
vide/change/access. E.g. information about the data sample that produced the value

to_atlasiff(attributes={}, up_suffix=’__1up’, down_suffix=’__1down’)
Returns string representation in ATLAS IFF format.

This is the XML format used by the fake-lepton background tool of the ATLAS Isolation and Fakes Forum.

Parameters

• attributes (str) – dictionary of attributes to put in the bin-tag

• up_suffix – suffix in variation keys to designate an up variation

• down_suffix – suffix in variation keys to designate an down variation

Usage example:

>>> import heppy as hp
>>> nominal = 12.3
>>> uncorr_variations = {

'stat__1up' : 12.4,
'stat__1down' : 12.1,
}

(continues on next page)

3

Heppy

(continued from previous page)

>>> corr_variations={
'efficiency__1up' : 13.1,
'efficiency__1down' : 9.8,
'energy_scale__1up' : 10.5,
}

>>> v = hp.Value(nominal, uncorr_variations=uncorr_variations, corr_
→˓variations=corr_variations)
>>> v.to_atlasiff(attributes={'pt' : '[20,inf]', '|eta|' : '[0.0,0.6]'})
'<bin pt="[20,inf]" |eta|="[0.0,0.6]"> 12.3 +0.1-0.2 (stat) -1.8+0.0 (energy_
→˓scale) +0.8-2.5 (efficiency) </bin>'

4 Chapter 1. Value with uncertainties

CHAPTER 2

Histogram

2.1 Base histogram

The base histogram class from which histograms of a specific dimension inherit.

class heppy.basehistogram(binedges, contents, areas=False, name=”, uncorr_variations={},
corr_variations={}, attributes={}, plot_attributes={})

Base class for one-dimensional and two-dimensional histograms that keep track of their various uncertainty
contributions and arbitrary attributes (useful for labeling and plotting).

Parameters

• binedges (numpy.array, or tuple of numpy.array) – bin edges, including up-
permost. For 1D histograms, a numpy.array. For 2D histograms, a tuple of two
numpy.array (in the x and y direction, respectively).

• contents (numpy.array) – the “bin contents”, which are either bin areas (= what
ROOT calls “bin contents”) or bin heights (= bin areas / bin sizes). See also argument
areas.

• areas (bool) – if True, interpret given contents as bin areas, else as bin heights

• name (str) – a name for the histogram. This is only separate from the other attributes be-
cause it is so commonly used and is automatically created for histograms produced by math-
ematically combining two histograms. E.g. dividing two histograms with names 'foo' and
'bar' will return a histogram with name 'foo / bar'.

• uncorr_variations (dict) – dictionary of variations that are uncorrelated between
bins (e.g. statistical uncertainty). Keys are variation names, values are np.array objects
of the same dimension as the nominal contents.

• corr_variations (dict) – dictionary of variations that are fully correlated between
bins (e.g. systematic uncertainty). Keys are variation names, values are np.array objects
of the same dimension as the nominal contents.

• attributes (dict) – dictionary of completely arbitrary attributes that the user can pro-
vide/change/access. E.g. information about the data sample that produced the histogram.

5

Heppy

• plot_attributes (dict) – dictionary of completely arbitrary that the user can pro-
vide/change/access. This one is more intended for information on how to visualise/plot the
histogram. It is especially useful if working with heppy.make_figure, which will assume that
all the plot_attributes correspond to keyword arguments that are understood by Matplotlib’s
plot() and/or fill_between() functions

extract_variation_histogram(variation, **kwargs)
Get a new histogram object that has a given variation as nominal. Useful e.g. for studying a particular
systematic variation.

Parameters

• variation (str) – name of the variation

• **kwargs – get passed on to constructor of new histogram, e.g. useful to set a name for
the new histogram.

Returns new heppy.histogram that has a given variation as nominal

Raises

• KeyError – if variation not found in either uncorrelated or correlated variations

• RuntimeError – if variation found in both uncorrelated or correlated variations

binsizes
Bin sizes.

For a one-dimensional histogram, returns an array of dimension (N, 1), where N is the number of bins.
The elements represent the width of each bin.

For a two-dimensional histogram, returns an array of dimension (N, M), where N is the number of bins
along the first axis (“x-axis”) and M is the number of bins along the second axis (“y-axis”). The elements
represent the area of each bin.

heights
Bin heights, equal to bin areas divided by the corresponding bin sizes

set_heights(heights)
Set bin heights

integral(variations=None, **kwargs)
Calculate the integral of the histogram.

Parameters

• variations (list of str or str) – if given, a tuple of the nominal integral and
its upper and lower variation is calculated. This argument is passed to histogram1d.
net_variations() and should be a list of considered variation names or the string
'all'.

• **kwargs – additional keyword arguments that get passed to histogram1d.
net_variations()

Returns the integral (as well as upper and lower variation if variations is given)

Return type float, or if variations are given, tuple of nominal as well as upper and
lower variation

net_variations(variations=’all’, subtract_nominal=False, relative=False)
Return upper and lower net heights variation of the histogram as a tuple.

6 Chapter 2. Histogram

Heppy

@variations should be a sequence of considered variation names or the string ‘all’ @subtract_nominal: if
True, return the differences with respect to the nominal heights @relative: if True, divide by the nominal
heights

CAUTION: this method cannot yet deal with systematic uncertainties for which the up- and down-shift lie
on the same side of the nominal. This is because the variations are fundamentally treated independently of
each other, so there is no sense of the up- and down-shift being related to the same underlying uncertainty
source.

errorbars(variations=’all’)
Returns upper and lower error bars, defined as the absolute net variations (taking into account the given
variations) with the nominal values subtracted.

__add__(other)
Add another histogram or a scalar to this histogram.

Returns the result of the addition as a histogram.

Correlated variations are treated as fully correlated among the two histograms if they have the same name,
otherwise they are treated as uncorrelated. Uncorrelated variations are treated as uncorrelated between the
two histograms.

__sub__(other)
Subtract another histogram or a scalar from this histogram.

Returns the result of the subtraction as a histogram.

Correlated variations are treated as fully correlated among the two histograms if they have the same name,
otherwise they are treated as uncorrelated. Uncorrelated variations are treated as uncorrelated between the
two histograms.

__mul__(other)
Multiply another histogram or a scalar binwise with this histogram.

Returns the result of the binwise multiplication as a histogram.

Correlated variations are treated as fully correlated among the two histograms if they have the same name,
otherwise they are treated as uncorrelated. Uncorrelated variations are treated as uncorrelated between the
two histograms.

__truediv__(other)
Divide by another histogram or a scalar binwise.

Returns the result of the binwise division as a histogram.

Correlated variations are treated as fully correlated among the two histograms if they have the same name,
otherwise they are treated as uncorrelated.

CAUTION: Uncorrelated variations are treated as uncorrelated between the two histograms. If the uncor-
related variations represent statistical uncertainties, this means that the division treats the two histograms
as statistically uncorrelated.

See also histdiv()

apply_inplace(function, new_binedges=None)
Call a function on the nominal areas as well as all varied areas (in corr_variations and
uncorr_variations), modifying the existing histogram.

It is possible to convert the histogram to a different type (e.g. histogram2d → histogram1d) by
giving new binedges of the desired new dimensionality. If the new binedges have a dimension other than
1D or 2D, the type will become basehistogram.

2.1. Base histogram 7

Heppy

For a version of this method that leaves the original histogram unchanged and returns a copy with the func-
tion applied (and optionally new bin edges), see basehistogram.apply(). I HIGHLY recommend
using that if the new histogram will be of different type to avoid confusion!

Caution: if you change the binning, it is your responsibility that uncertainties encoded in the variations are
handled correctly.

Parameters

• function (function) – function taking a numpy.array as argument

• new_binedges – optional argument to set new binedges. If the binedges change the
dimension of the histogram (e.g. from 2D to 1D), the histograms’ type is changed accord-
ingly

Example 1: taking the sine of the areas

import heppy as hp
import numpy as np
foo = hp.histogram1d(np.array([0., 1., 2., 3.]), [5., 6., 7])
foo.apply_inplace(np.sin)

Example 2: projecting a 2D histogram to its x-axis (integrating over the y-axis)

import heppy as hp
import numpy as np
binedges = (np.array([0., 10., 20.]), np.array([10., 20., 30.]))
areas = [[0.1, 0.2], [0.3, 0.4]]
foo = hp.histogram2d(binedges, areas, areas=True)
from functools import partial
project_x = partial(np.sum, axis=1)
foo.apply_inplace(project_x, new_binedges=foo.binedges[0])

Raises ValueError if the shape of the areas after the function is called on them does not
match the shape of the bin edges (after setting them to new_binedges if given)

apply(function, new_binedges=None)
Same as basehistogram.apply_inplace(), except that the resulting histogram is returned (as an
independent object) with the function applied, while the original histogram is not modified.

Returns histogram with function applied and possibly new bin edges (histogram1d,
histogram2d, or basehistogram)

to_file(outfilename, key, recreate=False)
Write histogram to text file. Multiple histograms with different keys can be written to the same file.

Parameters

• outfilename (str) – name of the file that the histogram is written to

• key (bool) – name/key of the histogram inside the output file

• recreate – option to recreate the output file rather than append to it

2.2 One-dimensional histogram

A histogram class with bins along one axis.

8 Chapter 2. Histogram

Heppy

class heppy.histogram1d(*args, **kwargs)
Heppy one-dimensional histogram. This has functionality for rebinning, getting various representations for
plotting (curve, points, errorbars, errorbands), as well as performing mathematical operations (these have only
been implemented for one-dimensional histograms so far).

nbins
Returns the number of bins in the histogram.

Returns number of bins in the histogram

Return type int

binwidths
Bin widths is an alias for bin sizes in the case of a one-dimensional histogram

bin_index(x)
Returns the index of the bin that contains the given x-value.

Lower bin edges are included in a bin, upper bin edges are excluded (same as in the ROOT convention).

Parameters x (float) – x-value

Returns index of bin that contains the x-value

Return type int

Raises ValueError – if x-value lies outside of the outer bin edges of the histogram

Example:

>>> h = histogram1d([0., 1., 2.], [10., 11.])
>>> h.bin_index(0.5)
0
>>> h.bin_index(0.)
0
>>> h.bin_index(1.0)
1
>>> h.bin_index(2.0)
ValueError: Cannot find index of bin containing x = 2.0, which is outside of
→˓histogram x-boundaries [0.0, 2.0)
>>> h.bin_index(-1.0)
ValueError: Cannot find index of bin containing x = -1.0, which is outside of
→˓histogram x-boundaries [0.0, 2.0)

curve(variation=”)
Curve representation of histogram @variation: if given, return the curve for the variation of this name.
Otherwise, return the nominal curve

points(variation=”, shift=0.0, abs_shift=False)
Point representation of histogram If @shift is given, the x-coordinates of the midpoints are given shifted
by this absolute x-value (if @abs_shift=True) or relative fraction of the corresponding bin’s width (if
@abs_shift=False)

errorband(*args, **kwargs)
Basically same as errorbars method, only in curve representation @*args and @**kwargs get passed on
to self.net_variations()

rebin(newedges)
Rebin to @newedges Each element of @newedges should correspond to an existing binedge, i.e. only
existing bins are merged

CAUTION: currently ASSUMES that each uncorrelated variation only has shifts in one direction of the
nominal (i.e. it is either higher or lower everywhere)!

2.2. One-dimensional histogram 9

https://root.cern

Heppy

merge_bins(xmin, xmax)
Merge the bins falling into the given x-range into one bin

squash_highest_bin(squash_above, new_xmax)
Merge all bins from @squash_above upwards and set the highest bin edge to @new_xmax.

height(bin_index)
Returns the height of the given bin index with uncertainties.

Returns height of the indexed bin including its variations

Return type heppy.value

Usage example:

>>> import heppy as hp
>>> h = hp.histogram1d([0., 1., 3.], [10., 11.], corr_variations={'systematic_
→˓_up' : [13., 11.5]})
>>> v = h.height(1)
>>> v.nominal
11.0
>>> v.corr_variations['systematic__up']
11.5

iterheights()
Generates iterator over heights.

Returns bin heights including their variations

Return type heppy.value

Usage example:

>>> import heppy as hp
>>> h = hp.histogram1d([0., 1., 3.], [10., 11.], corr_variations={'systematic_
→˓_up' : [13., 11.5]})
>>> for height in h.iterheights(): print(height.nominal, height.corr_
→˓variations['systematic__up'])
10.0 13.0
11.0 11.5

iterbins()
Generates iterator over bins, yielding bin edges and heights.

Returns bin egdes and nominal bin height

Return type tuple of the following: tuple of two float, and one float

Usage example:

>>> import heppy as hp
>>> h = hp.histogram1d([0., 1., 3.], [10., 11.], corr_variations={'systematic_
→˓_up' : [13., 11.5]})
>>> for binedges, height in h.iterbins(): print(binedges, height.nominal)
(0.0, 1.0) 10.0
(1.0, 3.0) 11.0
>>> for binedges, height in h.iterbins(): print(binedges, height.nominal,
→˓height.corr_variations['systematic__up'])
(0.0, 1.0) 10.0 13.0
(1.0, 3.0) 11.0 11.5

10 Chapter 2. Histogram

Heppy

to_yoda(identifier, metadata={})
Returns the histogram in YODA output format as a string.

See the websites of YODA and its main user Rivet for more information.

Parameters

• identifier (str) – in-file identifier for the histogram, e.g. '/REF/
ATLAS_2017_I1614149/d16-x01-y02'

• metadata (dict) – optional dictionary of metadata. E.g. for Rivet use,
one could have metadata = {'IsRef' : 1, 'Path' : '/REF/
ATLAS_2017_I1614149/d16-x01-y02', 'Title' : 'doi:10.17182/
hepdata.80041.v2/t16'}

Returns histogram formatted as YODA input string

Return type str

to_rivet(identifier, metadata={})
Returns the histogram in YODA output format as a string.

See the websites of YODA and its main user Rivet for more information.

Parameters

• identifier (str) – in-file identifier for the histogram, e.g. '/REF/
ATLAS_2017_I1614149/d16-x01-y02'

• metadata (dict) – optional dictionary of metadata. E.g. for Rivet use,
one could have metadata = {'IsRef' : 1, 'Path' : '/REF/
ATLAS_2017_I1614149/d16-x01-y02', 'Title' : 'doi:10.17182/
hepdata.80041.v2/t16'}

Returns histogram formatted as YODA input string

Return type str

__add__(other)
Add another histogram or a scalar to this histogram.

Returns the result of the addition as a histogram.

Correlated variations are treated as fully correlated among the two histograms if they have the same name,
otherwise they are treated as uncorrelated. Uncorrelated variations are treated as uncorrelated between the
two histograms.

__mul__(other)
Multiply another histogram or a scalar binwise with this histogram.

Returns the result of the binwise multiplication as a histogram.

Correlated variations are treated as fully correlated among the two histograms if they have the same name,
otherwise they are treated as uncorrelated. Uncorrelated variations are treated as uncorrelated between the
two histograms.

__sub__(other)
Subtract another histogram or a scalar from this histogram.

Returns the result of the subtraction as a histogram.

Correlated variations are treated as fully correlated among the two histograms if they have the same name,
otherwise they are treated as uncorrelated. Uncorrelated variations are treated as uncorrelated between the
two histograms.

2.2. One-dimensional histogram 11

https://yoda.hepforge.org
https://rivet.hepforge.org
https://yoda.hepforge.org
https://rivet.hepforge.org

Heppy

__truediv__(other)
Divide by another histogram or a scalar binwise.

Returns the result of the binwise division as a histogram.

Correlated variations are treated as fully correlated among the two histograms if they have the same name,
otherwise they are treated as uncorrelated.

CAUTION: Uncorrelated variations are treated as uncorrelated between the two histograms. If the uncor-
related variations represent statistical uncertainties, this means that the division treats the two histograms
as statistically uncorrelated.

See also histdiv()

apply(function, new_binedges=None)
Same as basehistogram.apply_inplace(), except that the resulting histogram is returned (as an
independent object) with the function applied, while the original histogram is not modified.

Returns histogram with function applied and possibly new bin edges (histogram1d,
histogram2d, or basehistogram)

apply_inplace(function, new_binedges=None)
Call a function on the nominal areas as well as all varied areas (in corr_variations and
uncorr_variations), modifying the existing histogram.

It is possible to convert the histogram to a different type (e.g. histogram2d → histogram1d) by
giving new binedges of the desired new dimensionality. If the new binedges have a dimension other than
1D or 2D, the type will become basehistogram.

For a version of this method that leaves the original histogram unchanged and returns a copy with the func-
tion applied (and optionally new bin edges), see basehistogram.apply(). I HIGHLY recommend
using that if the new histogram will be of different type to avoid confusion!

Caution: if you change the binning, it is your responsibility that uncertainties encoded in the variations are
handled correctly.

Parameters

• function (function) – function taking a numpy.array as argument

• new_binedges – optional argument to set new binedges. If the binedges change the
dimension of the histogram (e.g. from 2D to 1D), the histograms’ type is changed accord-
ingly

Example 1: taking the sine of the areas

import heppy as hp
import numpy as np
foo = hp.histogram1d(np.array([0., 1., 2., 3.]), [5., 6., 7])
foo.apply_inplace(np.sin)

Example 2: projecting a 2D histogram to its x-axis (integrating over the y-axis)

import heppy as hp
import numpy as np
binedges = (np.array([0., 10., 20.]), np.array([10., 20., 30.]))
areas = [[0.1, 0.2], [0.3, 0.4]]
foo = hp.histogram2d(binedges, areas, areas=True)
from functools import partial
project_x = partial(np.sum, axis=1)
foo.apply_inplace(project_x, new_binedges=foo.binedges[0])

12 Chapter 2. Histogram

Heppy

Raises ValueError if the shape of the areas after the function is called on them does not
match the shape of the bin edges (after setting them to new_binedges if given)

binsizes
Bin sizes.

For a one-dimensional histogram, returns an array of dimension (N, 1), where N is the number of bins.
The elements represent the width of each bin.

For a two-dimensional histogram, returns an array of dimension (N, M), where N is the number of bins
along the first axis (“x-axis”) and M is the number of bins along the second axis (“y-axis”). The elements
represent the area of each bin.

errorbars(variations=’all’)
Returns upper and lower error bars, defined as the absolute net variations (taking into account the given
variations) with the nominal values subtracted.

extract_variation_histogram(variation, **kwargs)
Get a new histogram object that has a given variation as nominal. Useful e.g. for studying a particular
systematic variation.

Parameters

• variation (str) – name of the variation

• **kwargs – get passed on to constructor of new histogram, e.g. useful to set a name for
the new histogram.

Returns new heppy.histogram that has a given variation as nominal

Raises

• KeyError – if variation not found in either uncorrelated or correlated variations

• RuntimeError – if variation found in both uncorrelated or correlated variations

heights
Bin heights, equal to bin areas divided by the corresponding bin sizes

integral(variations=None, **kwargs)
Calculate the integral of the histogram.

Parameters

• variations (list of str or str) – if given, a tuple of the nominal integral and
its upper and lower variation is calculated. This argument is passed to histogram1d.
net_variations() and should be a list of considered variation names or the string
'all'.

• **kwargs – additional keyword arguments that get passed to histogram1d.
net_variations()

Returns the integral (as well as upper and lower variation if variations is given)

Return type float, or if variations are given, tuple of nominal as well as upper and
lower variation

net_variations(variations=’all’, subtract_nominal=False, relative=False)
Return upper and lower net heights variation of the histogram as a tuple.

@variations should be a sequence of considered variation names or the string ‘all’ @subtract_nominal: if
True, return the differences with respect to the nominal heights @relative: if True, divide by the nominal
heights

2.2. One-dimensional histogram 13

Heppy

CAUTION: this method cannot yet deal with systematic uncertainties for which the up- and down-shift lie
on the same side of the nominal. This is because the variations are fundamentally treated independently of
each other, so there is no sense of the up- and down-shift being related to the same underlying uncertainty
source.

set_heights(heights)
Set bin heights

to_file(outfilename, key, recreate=False)
Write histogram to text file. Multiple histograms with different keys can be written to the same file.

Parameters

• outfilename (str) – name of the file that the histogram is written to

• key (bool) – name/key of the histogram inside the output file

• recreate – option to recreate the output file rather than append to it

Convenience alias for one-dimensional histograms, since these are the most commonly encountered type in high-
energy physics.

heppy.histogram
alias of heppy.histogram.histogram1d

2.3 Two-dimensional histogram

A histogram class with bins along two axes.

class heppy.histogram2d(*args, **kwargs)
Heppy two-dimensional histogram. This currently has much more limited functionality than the 1D histogram
class, although probably most (if not all) of the former’s mathematical operations should also work for the 2D
histogram (at least with minor modifications).

Note: only independent binnings of the two axes are supported (i.e. y-bins don’t depend on x-bins and vice
versa).

nbins

Returns tuple of number of bins along x- and y-axis

bin_index_x(x)
Returns the index of the x-axis bin that contains the given x-value.

Lower bin edges are included in a bin, upper bin edges are excluded (same as in the ROOT convention).

Parameters x (float) – x-value

Returns index of x-axis bin that contains the x-value

Return type int

Raises ValueError – if x-value lies outside of the outer bin edges of the histogram

bin_index_y(y)
Returns the index of the y-axis bin that contains the given y-value.

Lower bin edges are included in a bin, upper bin edges are excluded (same as in the ROOT convention).

Parameters y (float) – y-value

Returns index of y-axis bin that contains the y-value

Return type int

14 Chapter 2. Histogram

https://root.cern
https://root.cern

Heppy

Raises ValueError – if y-value lies outside of the outer bin edges of the histogram

points()
Point representation of 2D histogram.

This involves flattening/ravelling the histogram bin midpoints and heights to one-dimensional arrays. The
flattening is done in row-major, C-style order, with the y-axis index changing fastest and the x-axis index
changing slowest.

Returns tuple of x-axis bin midpoints, y-axis bin midpoints, and heights

rebin(newedges)
Rebin 2D histogram. Correlated and uncorrelated variations will be recalculated to match the new bin
edges.

CAUTION: currently ASSUMES that each uncorrelated variation only has shifts in one direction of the
nominal (i.e. it is either higher or lower everywhere)!

Parameters newedges (tuple of two numpy.array) – new bin edges. Each new bin edge
should correspond to an existing bin edge, i.e. only existing bins are merged

Raises ValueError if newedges is not of the correct type

as_1d(name=”)
Return a copied one-dimensional reinterpretation of this histogram. This only works if the histogram only
has one bin in one of its dimensions. This dimension will then be ignored.

Parameters name (str) – name for the reinterpreted histogram

project(axis, name=”)
Project histogram to one axis by integrating over the other. Correlated and uncorrelated uncertainties are
computed for the resulting one-dimensional histogram.

Parameters

• axis ('x' or 'y') – which axis to project onto

• name (str) – name for the projection histogram

Returns heppy.histogram1d representing the projection

Raises ValueError if invalid axis identifier is given

slice(axis, bin_index, name=”)
Returns 1D histogram of the distribution along one axis in a given bin of the other axis.

Parameters

• axis ('x' or 'y') – axis along which the slicing is done, i.e. the axis that is kept

• bin_index (float) – index of the bin on the axis that is not kept

• name (str) – name for the slice histogram

Returns 1D histogram of the slice

Return type heppy.histogram1d

height(bin_index_x, bin_index_y)
Returns the height of the given bin indices with uncertainties.

Parameters

• bin_index_x – bin index along x-axis

• bin_index_x – int

2.3. Two-dimensional histogram 15

Heppy

• bin_index_y – bin index along y-axis

• bin_index_y – int

Returns height of the indexed bin including its variations

Return type heppy.value

iterheights(faster=’y’)
Generates iterator over heights.

Parameters faster (str; 'x' or 'y') – controls the iteration order by specifying along
which axis the bin index changes faster

Returns bin heights including their variations

Return type heppy.value

iterbins()
Generates iterator over bins, yielding bin edges and heights.

Returns x-axis bin egdes, y-axis bin edges, and bin height with variations

Return type tuple of the following: tuple of two float, tuple of two float, and one
heppy.value

Usage example:

>>> import heppy as hp
>>> import numpy as np
>>> heights = np.array([# bin heights

[1., 5.],
[2., 6.],
[3., 7.],
])

>>> x = np.array([-7., 0., 5., 50.]) # bin edges in x
>>> y = np.array([-1., 0., 1.]) # bin edges in y
>>> h = hp.histogram2d((x, y), heights)
>>> for binedges_x, binedges_y, height in h.iterbins(): print(binedges_x,
→˓binedges_y, height.nominal)
(-7.0, 0.0) (-1.0, 0.0) 1.0
(-7.0, 0.0) (0.0, 1.0) 5.0
(0.0, 5.0) (-1.0, 0.0) 2.0
(0.0, 5.0) (0.0, 1.0) 6.0
(5.0, 50.0) (-1.0, 0.0) 3.0
(5.0, 50.0) (0.0, 1.0) 7.0

__add__(other)
Add another histogram or a scalar to this histogram.

Returns the result of the addition as a histogram.

Correlated variations are treated as fully correlated among the two histograms if they have the same name,
otherwise they are treated as uncorrelated. Uncorrelated variations are treated as uncorrelated between the
two histograms.

__mul__(other)
Multiply another histogram or a scalar binwise with this histogram.

Returns the result of the binwise multiplication as a histogram.

Correlated variations are treated as fully correlated among the two histograms if they have the same name,
otherwise they are treated as uncorrelated. Uncorrelated variations are treated as uncorrelated between the
two histograms.

16 Chapter 2. Histogram

Heppy

__sub__(other)
Subtract another histogram or a scalar from this histogram.

Returns the result of the subtraction as a histogram.

Correlated variations are treated as fully correlated among the two histograms if they have the same name,
otherwise they are treated as uncorrelated. Uncorrelated variations are treated as uncorrelated between the
two histograms.

__truediv__(other)
Divide by another histogram or a scalar binwise.

Returns the result of the binwise division as a histogram.

Correlated variations are treated as fully correlated among the two histograms if they have the same name,
otherwise they are treated as uncorrelated.

CAUTION: Uncorrelated variations are treated as uncorrelated between the two histograms. If the uncor-
related variations represent statistical uncertainties, this means that the division treats the two histograms
as statistically uncorrelated.

See also histdiv()

apply(function, new_binedges=None)
Same as basehistogram.apply_inplace(), except that the resulting histogram is returned (as an
independent object) with the function applied, while the original histogram is not modified.

Returns histogram with function applied and possibly new bin edges (histogram1d,
histogram2d, or basehistogram)

apply_inplace(function, new_binedges=None)
Call a function on the nominal areas as well as all varied areas (in corr_variations and
uncorr_variations), modifying the existing histogram.

It is possible to convert the histogram to a different type (e.g. histogram2d → histogram1d) by
giving new binedges of the desired new dimensionality. If the new binedges have a dimension other than
1D or 2D, the type will become basehistogram.

For a version of this method that leaves the original histogram unchanged and returns a copy with the func-
tion applied (and optionally new bin edges), see basehistogram.apply(). I HIGHLY recommend
using that if the new histogram will be of different type to avoid confusion!

Caution: if you change the binning, it is your responsibility that uncertainties encoded in the variations are
handled correctly.

Parameters

• function (function) – function taking a numpy.array as argument

• new_binedges – optional argument to set new binedges. If the binedges change the
dimension of the histogram (e.g. from 2D to 1D), the histograms’ type is changed accord-
ingly

Example 1: taking the sine of the areas

import heppy as hp
import numpy as np
foo = hp.histogram1d(np.array([0., 1., 2., 3.]), [5., 6., 7])
foo.apply_inplace(np.sin)

Example 2: projecting a 2D histogram to its x-axis (integrating over the y-axis)

2.3. Two-dimensional histogram 17

Heppy

import heppy as hp
import numpy as np
binedges = (np.array([0., 10., 20.]), np.array([10., 20., 30.]))
areas = [[0.1, 0.2], [0.3, 0.4]]
foo = hp.histogram2d(binedges, areas, areas=True)
from functools import partial
project_x = partial(np.sum, axis=1)
foo.apply_inplace(project_x, new_binedges=foo.binedges[0])

Raises ValueError if the shape of the areas after the function is called on them does not
match the shape of the bin edges (after setting them to new_binedges if given)

binsizes
Bin sizes.

For a one-dimensional histogram, returns an array of dimension (N, 1), where N is the number of bins.
The elements represent the width of each bin.

For a two-dimensional histogram, returns an array of dimension (N, M), where N is the number of bins
along the first axis (“x-axis”) and M is the number of bins along the second axis (“y-axis”). The elements
represent the area of each bin.

errorbars(variations=’all’)
Returns upper and lower error bars, defined as the absolute net variations (taking into account the given
variations) with the nominal values subtracted.

extract_variation_histogram(variation, **kwargs)
Get a new histogram object that has a given variation as nominal. Useful e.g. for studying a particular
systematic variation.

Parameters

• variation (str) – name of the variation

• **kwargs – get passed on to constructor of new histogram, e.g. useful to set a name for
the new histogram.

Returns new heppy.histogram that has a given variation as nominal

Raises

• KeyError – if variation not found in either uncorrelated or correlated variations

• RuntimeError – if variation found in both uncorrelated or correlated variations

heights
Bin heights, equal to bin areas divided by the corresponding bin sizes

integral(variations=None, **kwargs)
Calculate the integral of the histogram.

Parameters

• variations (list of str or str) – if given, a tuple of the nominal integral and
its upper and lower variation is calculated. This argument is passed to histogram1d.
net_variations() and should be a list of considered variation names or the string
'all'.

• **kwargs – additional keyword arguments that get passed to histogram1d.
net_variations()

Returns the integral (as well as upper and lower variation if variations is given)

18 Chapter 2. Histogram

Heppy

Return type float, or if variations are given, tuple of nominal as well as upper and
lower variation

net_variations(variations=’all’, subtract_nominal=False, relative=False)
Return upper and lower net heights variation of the histogram as a tuple.

@variations should be a sequence of considered variation names or the string ‘all’ @subtract_nominal: if
True, return the differences with respect to the nominal heights @relative: if True, divide by the nominal
heights

CAUTION: this method cannot yet deal with systematic uncertainties for which the up- and down-shift lie
on the same side of the nominal. This is because the variations are fundamentally treated independently of
each other, so there is no sense of the up- and down-shift being related to the same underlying uncertainty
source.

set_heights(heights)
Set bin heights

to_file(outfilename, key, recreate=False)
Write histogram to text file. Multiple histograms with different keys can be written to the same file.

Parameters

• outfilename (str) – name of the file that the histogram is written to

• key (bool) – name/key of the histogram inside the output file

• recreate – option to recreate the output file rather than append to it

2.4 Free functions

Free functions related to histograms.

heppy.histdiv(a, b, corr=None, ignore_denominator_uncertainty=False)
Sophisticated division of two histograms

Parameters

• a (heppy.basehistogram) – numerator histogram

• b (heppy.basehistogram) – denominator histogram

• corr – information on how a and b are correlated — NOT YET IMPLEMENTED, do not
use

• ignore_denominator_uncertainty (bool) – switch to ignore the variations of
the denominator histogram. If True, divide all variations of the numerator histogram by the
nominal denominator histogram.

NOTE: the returned ratio histogram’s bin heights are not given “per bin size”, but take the role that the areas
have for histograms that do not represent a ratio.

Returns ratio histogram a/b with variations treated as specified

Raises NotImplementedError – if corr is not None (remains to be implemented)

heppy.from_file(infilename, key)
Read histogram written out by heppy (using heppy.basehistogram.to_file).

Parameters

• infilename (str) – name of the file that the histogram should be read from

2.4. Free functions 19

Heppy

• key (str) – name/key of the histogram inside the input file

Returns heppy.histogram1d or heppy.histogram2d

20 Chapter 2. Histogram

CHAPTER 3

Histogram stack

A collection of histograms. The total summed histogram and its variations may be accessed easily, and the stack may
be plotted conveniently.

class heppy.histostack(histograms, attributes={})
Stack of one-dimensional histograms

Parameters

• histograms (list of heppy.histogram1d) – histograms in the stack

• attributes (dict) – dictionary of completely arbitrary attributes that the user can pro-
vide/change/access. E.g. information on how to plot

total

Returns heppy.histogram1d that is the combination of all the stacked ones, with the com-
bined uncertainty. If the stack has no histograms, returns None

iterbands()
Bands are 3-tuples of (curve representation) x-values as well as two subsequent curves that are useful as
arguments to plt.fill_between(). E.g.:

for histogram, band in zip(stack.histograms, stack.iterbands()):
ax.fill_between(*band, **histogram.attributes)

The bands are ordered such that the first histogram in the stack is at the top and the last at the bottom

21

Heppy

22 Chapter 3. Histogram stack

CHAPTER 4

Plotting

Two-dimensional histogram plotting.

class heppy.panel(title=”, height=1.0, xlabel=”, ylabel=”, logx=False, logy=False, stack=None,
curves=[], bands=[], points=[], pointshift=0.0, ylims=None, nolegend=False, leg-
end_title=None)

A panel holds histograms and other information that describe a panel of a plot

Parameters

• title (str) – title of the panel

• height (float) – relative height of the panel with respect to any other panels in a plot

• xlabel (str) – x-axis label

• ylabel (str) – y-axis label

• logx (bool) – plot x-axis on a logarithmic scale?

• logy (bool) – plot y-axis on a logarithmic scale?

• stack (heppy.histostack, or None) – histogram stack to plot

• curves (list of heppy.histogram1d) – histograms to plot as curves

• bands (list of heppy.histogram1d) – histograms to plot as (uncertainty) bands

• points (list of heppy.histogram1d) – histograms to plot as points located at the
centre of each of their bins

• pointshift (float) – distance to shift points by horizontally to avoid overlap and improve
readability. This functionality is poorly tested and may be broken

• ylims (tuple of float, or None) – can be used to manually set lower and upper y-axis limits,
e.g. ylims=(0.0, 2.0)

• legend_title (str) – legend title

heppy.make_figure(panels, title=”, figsize=(8, 5), write=”, xmax=None, legend_outside=False)

Parameters

23

Heppy

• panels (heppy.panel or list of heppy.panel) – panel(s) to visualise in the plot

• title (str) – plot title

• write (str) – may be changed to a filename, which will result in the figure being rendered
and saved at the given location

• legend_outside (bool) – option to move the legend next to the plot panels. It also
changes the legend style to try to make it look better next to the plot: no box, text wrapped
at 30 characters (not tested with LaTeX rendering — proceed with caution), smaller text
(fontsize=’small’)

Returns tuple of the created plt.figure object and plt.axes objects. These can be assigned to variables
by the user to allow further manipulations of the plot (style, contents, etc.)

heppy.make_uncertainty_breakdown(histogram, separator=’__’, ylims=None, xlabel=”,
**kwargs)

@histogram: heppy.histogram object for which the uncertainty breakdown figure will be made @separator:
string that separates high/low (up/down, . . .) indictator from the rest of the uncertainty name, e.g.

“jet_energy_scale__1up” and “jet_energy_scale__1down” uses the separator “__”

@ylims: may be set to a tuple/list of lower and upper y-axis limits, e.g. ylims=(0.0, 2.0) @**kwargs: get passed
on to make_figure()

24 Chapter 4. Plotting

CHAPTER 5

Heatmap (3D plot)

heppy.make_heatmap(histogram, areas=False, title=”, figsize=(8, 5), text_format=<function TextFor-
matter.brief>, text_precision=3, text_autocolor=True, monowidth=False, write=”,
xmax=None, **kwargs)

Make a heatmap plot of a two-dimensional histogram

Parameters

• histogram (heppy.histogram2d) – two-dimensional histogram to visualise

• title (str) – plot title

• figsize (tuple of float) – figure size

• text_format (str, function or None) – string template or function returning the text
to be printed inside each bin. The following format keys (if string) or keyword arguments
(if function) will be provided: {nominal}, {uncert_up} and {uncert_down} for total un-
certainty, {stat_up} and {stat_down} for statistical uncertainty, {syst_up} and {syst_down}
for systematic uncertainty. All uncertainties are given as non-negative numbers. The class
heppy.TextFormatter provides a set of useful and somewhat adaptable predefined
formatter functions.

• monowidth (bool) – if True, all bins are shown as equally wide/high, with the bin edges
written in the label.

• write (str) – may be changed to a filename, which will result in the figure being rendered
and saved to disk

• **kwargs – keyword arguments that get passed on to plt.hist2d

The following keys in histogram.plot_attributes can be used to set labels:

• "title" – plot title

• "xlabel" – x-axis label

• "ylabel" – y-axis label

• "zlabel" – z-axis (colour palette) label

25

Heppy

class heppy.TextFormatter
Predefined functions to format bin content text printed on heatmap. The user can alternatively write their own
such functions.

Contents will be printed with a precision of (up to) three significant digits. If you want to set a different precision,
you can create your own adapted formatting function as the following example illustrates:

import functools
set the number of significant digits (e.g. to 4)
formatter = functools.partial(TextFormatter.nominal, significants=4)
or set the fixed absolute precision (e.g. to 3 digits after the decimal point)
formatter = functools.partial(TextFormatter.nominal, fixedprec=3)
then use as: heppy.make_heatmap(..., text_format=formatter, ...)

Here significants represents the maximum number of significant digits considered (default: 3), while
fixedprec represents the fixed absolute precision considered, e.g. 1 for a precision of 0.1 or -1 for a
precision of 10 (default: None). If fixedprec is given, significants is ignored.

Hint: when writing a custom formatting function, any unnecessary keyword arguments can be absorbed into a
**kwargs catch-all parameter to keep the function signature shorter and tidier.

static nominal(significants=3, fixedprec=None, nominal=None, **ignore)
Returns LaTeX string of nominal value.

static brief(significants=3, fixedprec=None, nominal=None, uncert_up=None, un-
cert_down=None, **ignore)

Returns LaTeX string of nominal value and total uncertainty.

The format is nominal± 𝜎, where 𝜎 is the uncertainty from the uncorrelated variations and the correlated
variations. Asymmetric uncertainties are supported and will be shown as 𝜎up

𝜎down .

static statsyst(significants=3, fixedprec=None, nominal=None, stat_up=None,
stat_down=None, syst_up=None, syst_down=None, **ignore)

Returns LaTeX string of nominal value and statistical and systematic uncertainty.

The format is nominal± 𝜎stat ± 𝜎syst, where 𝜎stat is the uncertainty from the uncorrelated variations and
𝜎syst is the uncertainty from the correlated variations. Asymmetric uncertainties are supported and will be

shown as
𝜎up
syst

𝜎down
syst

etc.

26 Chapter 5. Heatmap (3D plot)

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

27

Heppy

28 Chapter 6. Indices and tables

Index

Symbols
__add__() (heppy.basehistogram method), 7
__add__() (heppy.histogram1d method), 11
__add__() (heppy.histogram2d method), 16
__mul__() (heppy.basehistogram method), 7
__mul__() (heppy.histogram1d method), 11
__mul__() (heppy.histogram2d method), 16
__sub__() (heppy.basehistogram method), 7
__sub__() (heppy.histogram1d method), 11
__sub__() (heppy.histogram2d method), 17
__truediv__() (heppy.basehistogram method), 7
__truediv__() (heppy.histogram1d method), 11
__truediv__() (heppy.histogram2d method), 17

A
apply() (heppy.basehistogram method), 8
apply() (heppy.histogram1d method), 12
apply() (heppy.histogram2d method), 17
apply_inplace() (heppy.basehistogram method), 7
apply_inplace() (heppy.histogram1d method), 12
apply_inplace() (heppy.histogram2d method), 17
as_1d() (heppy.histogram2d method), 15

B
basehistogram (class in heppy), 5
bin_index() (heppy.histogram1d method), 9
bin_index_x() (heppy.histogram2d method), 14
bin_index_y() (heppy.histogram2d method), 14
binsizes (heppy.basehistogram attribute), 6
binsizes (heppy.histogram1d attribute), 13
binsizes (heppy.histogram2d attribute), 18
binwidths (heppy.histogram1d attribute), 9
brief() (heppy.TextFormatter static method), 26

C
curve() (heppy.histogram1d method), 9

E
errorband() (heppy.histogram1d method), 9

errorbars() (heppy.basehistogram method), 7
errorbars() (heppy.histogram1d method), 13
errorbars() (heppy.histogram2d method), 18
extract_variation_histogram()

(heppy.basehistogram method), 6
extract_variation_histogram()

(heppy.histogram1d method), 13
extract_variation_histogram()

(heppy.histogram2d method), 18

F
from_file() (in module heppy), 19

H
height() (heppy.histogram1d method), 10
height() (heppy.histogram2d method), 15
heights (heppy.basehistogram attribute), 6
heights (heppy.histogram1d attribute), 13
heights (heppy.histogram2d attribute), 18
histdiv() (in module heppy), 19
histogram (in module heppy), 14
histogram1d (class in heppy), 8
histogram2d (class in heppy), 14
histostack (class in heppy), 21

I
integral() (heppy.basehistogram method), 6
integral() (heppy.histogram1d method), 13
integral() (heppy.histogram2d method), 18
iterbands() (heppy.histostack method), 21
iterbins() (heppy.histogram1d method), 10
iterbins() (heppy.histogram2d method), 16
iterheights() (heppy.histogram1d method), 10
iterheights() (heppy.histogram2d method), 16

M
make_figure() (in module heppy), 23
make_heatmap() (in module heppy), 25

29

Heppy

make_uncertainty_breakdown() (in module
heppy), 24

merge_bins() (heppy.histogram1d method), 10

N
nbins (heppy.histogram1d attribute), 9
nbins (heppy.histogram2d attribute), 14
net_variations() (heppy.basehistogram method),

6
net_variations() (heppy.histogram1d method), 13
net_variations() (heppy.histogram2d method), 19
nominal() (heppy.TextFormatter static method), 26

P
panel (class in heppy), 23
points() (heppy.histogram1d method), 9
points() (heppy.histogram2d method), 15
project() (heppy.histogram2d method), 15

R
rebin() (heppy.histogram1d method), 9
rebin() (heppy.histogram2d method), 15

S
set_heights() (heppy.basehistogram method), 6
set_heights() (heppy.histogram1d method), 14
set_heights() (heppy.histogram2d method), 19
slice() (heppy.histogram2d method), 15
squash_highest_bin() (heppy.histogram1d

method), 10
statsyst() (heppy.TextFormatter static method), 26

T
TextFormatter (class in heppy), 25
to_atlasiff() (heppy.Value method), 3
to_file() (heppy.basehistogram method), 8
to_file() (heppy.histogram1d method), 14
to_file() (heppy.histogram2d method), 19
to_rivet() (heppy.histogram1d method), 11
to_yoda() (heppy.histogram1d method), 10
total (heppy.histostack attribute), 21

V
Value (class in heppy), 3

30 Index

	Value with uncertainties
	Histogram
	Base histogram
	One-dimensional histogram
	Two-dimensional histogram
	Free functions

	Histogram stack
	Plotting
	Heatmap (3D plot)
	Indices and tables
	Index

